The Resolution Complexity of Random Constraint Satisfaction Problems

نویسندگان

  • Michael Molloy
  • Mohammad R. Salavatipour
چکیده

We consider random instances of constraint satisfaction problems where each variable has domain size d, and each constraint contains t restrictions on k variables. For each (d; k; t) we determine whether the resolution complexity is a.s. constant, polynomial or exponential in the number of variables. For a particular range of (d; k; t), we determine a sharp threshold for resolution complexity where the resolution complexity drops from a.s. exponential to a.s. polynomial when the clause density passes a specific value.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolution Complexity of Random Constraint Satisfaction Problems: Another Half of the Story

Let C n,cn be a random constraint satisfaction problem(CSP) of n binary variables, where c > 0 is a fixed constant and the cn constraints are selected uniformly and independently from all the possible k-ary constraints each of which contains exactly t tuples of the values as its restrictions. We establish upper bounds for the tightness threshold for C n,cn to have an exponential resolution comp...

متن کامل

The Satisfiability Threshold for Randomly Generated Binary Constraint Satisfaction Problems

We study two natural models of randomly generated constraint satisfaction problems. We determine how quickly the domain size must grow with n to ensure that these models are robust in the sense that they exhibit a non-trivial threshold of satisfiability, and we determine the asymptotic order of that threshold. We also provide resolution complexity lower bounds for these models. One of our resul...

متن کامل

Hiding Quiet Solutions in Random Constraint Satisfaction Problems

We study constraint satisfaction problems on the so-called planted random ensemble. We show that for a certain class of problems, e.g., graph coloring, many of the properties of the usual random ensemble are quantitatively identical in the planted random ensemble. We study the structural phase transitions and the easy-hard-easy pattern in the average computational complexity. We also discuss th...

متن کامل

Formula dissection: A parallel algorithm for constraint satisfaction

Many well-known problems in Artificial Intelligence can be formulated in terms of systems of constraints. The problem of testing the satisfiability of propositional formulae (SAT) is of special importance due to its numerous applications in theoretical computer science and Artificial Intelligence. A brute-force algorithm for SAT will have exponential time complexity O(), where n is the number ...

متن کامل

Implicit Random Constraint Satisfaction Problems

Random CSPs (Constraint Satisfaction Problems) provide interesting benchmarks for experimental evaluation of algorithms. From a theoretical point of view, a lot of recent works have contributed to guarantee the existence of a so-called phase transition and, consequently, of hard and large problem instances. From a practical point of view, due to exponential space complexity, a vast majority of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Comput.

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2003